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Fig. 1: GRAPPA framework. An overview of the proposed self-improving framework where the pretrained policy is updated
by visuomotor-grounded guidance at test time. GRAPPA can guide and provide robustness to policies under two main failure
modes: A) when a pretrained policy with limited to no access to real data is applied to an embodied system and B) there is a
lot of noise, in the form of clutter, affecting the observations of the base policy.

Abstract—Robot learning approaches such as behavior cloning
and reinforcement learning have shown great promise in syn-
thesizing robot skills from human demonstrations in specific
environments. However, these approaches often require task-
specific demonstrations or designing complex simulation envi-
ronments, which limits the development of generalizable and
robust policies for unseen real-world settings. Recent advances
in the use of foundation models for robotics (e.g., LLMs, VLMs)
have shown great potential in enabling systems to understand the
semantics in the world from large-scale internet data. However, it
remains an open challenge to use this knowledge to enable robotic
systems to understand the underlying dynamics of the world, to
generalize policies across different tasks, and to adapt policies to
new environments. To alleviate these limitations, we propose an
agentic framework for robot self-guidance and self-improvement,
which consists of a set of role-specialized conversational agents,
such as a high-level advisor, a grounding agent, a monitoring
agent, and a robotic agent. Our framework iteratively grounds
a base robot policy to relevant objects in the environment and
uses visuomotor cues to shift the action distribution of the policy
to more desirable states, online, while remaining agnostic to the
subjective configuration of a given robot hardware platform. We
demonstrate that our approach can effectively guide manipula-
tion policies to achieve significantly higher success rates, both in
simulation and in real-world experiments, without the need for

additional human demonstrations or extensive exploration.

I. INTRODUCTION

In recent years, the advent of foundation models, such
as pre-trained large language models (LLMs) and vision
language models (VLMs), has enabled impressive capabilities
in understanding context, scenes, and dynamics in the world.
Furthermore, emergent capabilities such as in-context learning
have shown great potential in the transfer of knowledge
between domains, e.g., via few-shot demonstrations or zero-
shot inference. However, the application of these models to
robotics is still limited, given the intrinsic complexity and
scarcity of human-robot interactions and the lack of large-scale
datasets of human-annotated data or demonstrations [12, 40].

Approaches that leverage LLMs and VLMs alongside
robotics systems often fall into one of two categories. The
first category is that of using foundation models as zero-
shot planners, code-generators, and task-descriptors—all of
which attempt to use the foundation model to provide some
high-level instruction to a low-level policy or to describe the
policy’s actions in natural language [32, 34, 2, 25] or generated



plans as code [22, 35]. While these works have illustrated
impressive reasoning capabilities, they still required either
learning additional mappings to interface the generated natural
language instructions with the low-level policy or, in the case
of the code generation examples, they rely on pre-existing
handcrafted primitives to compose. For the second category,
in the use of foundation models for robot learning, methods
may fine-tune the foundation models to improve in-domain
performance by imparting strong priors for effective, albeit
platform-dependent task-execution [3, 36, 19]. Here, parts of
a robot policy or the entire policy is supervised to perform
certain prediction tasks or to learn desired behaviors, end-
to-end. While this strategy has led to impressive capabilities
on a variety of tasks, methods often struggle to generalize to
different object categories, tasks, and environments that are
outside the data distribution that the models were trained on,
or the models struggle with issues of negative transfer when
trained on very diverse collections of robot data [6, 18].

In this paper, we extend the deployability of robot policies
by using foundation models to generate low-level visuomotor
guidance to handle out-of-distribution scenarios, such as sim-
to-real differences or new tasks and robot platform variations
(Figure 2). We design an agent-based framework, where a team
of conversational agents works together to refine the action
distribution of a robot’s base policy, via grounded visuomotor
guidance (Figure 3). As illustrated in Figure 4, and upon a
request from the advisor agent, the grounding agent can look
for objects through a combination of detection, tracking, and
high-level reasoning, to broaden or restrict the search as the
context demands. When looking for a mug, for example, the
agents could first look for a semantically-relevant receptacle
that likely contains the mug (the cupboard) and narrow the
search from there. Once the target object has been visually
located, the Monitor and Advisor agents generate a guidance
function that outputs a biasing guidance distribution, which,
when combined with the action distribution of the Robotic
agent (policy), ensures that the policy can complete task-
relevant behaviors until it succeeds. In this way, the agentic
framework bridges high-level reasoning with low-level control,
enabling systems to reason about failure and self-guide.

In simulated and real-world experiments, we comprehen-
sively and empirically demonstrate that our framework for
Generalizing and Adapting Robot Policies via Online Agentic
Guidance (GRAPPA) provides robustness for a variety of repre-
sentative base policy classes to sim-to-real transfer paradigms
and out-of-distribution settings, such as unseen objects.

In summary, our paper provides the following contributions:
• We propose GRAPPA, an agentic robot policy framework

that self-improves by generating a guidance function to
update base policies’ action distributions, online. Our frame-
work is capable of learning skills from scratch after de-
ployment and generalizes across various base policy classes,
tasks, and environments.

• For robustness against cluttered and unseen environments,
we propose a grounding agent that performs multi-granular
object search, which enables flexible visuomotor grounding.

Fig. 2: Heatmap visualization of the guidance distribution,
generated online by our proposed agentic framework, which
produces code that biases a robot policy’s action distribution
towards desirable behavior.

• We provide experimental results showcasing GRAPPA as a
helper tool for aiding in the sim-to-real transfer of policies
without the need for extensive data collection.

II. RELATED WORK

Vision-Language Models for Robot Learning: Several
works explore the notion of leveraging pre-trained or
fine-tuned Large Language Models (LLMs) and/or Vision-
Language Models (VLMs) for high-level reasoning and plan-
ning in robotics tasks [12, 2, 22, 14, 35, 13, 10, 7, 29, 26,
21, 30]—typically decomposing high-level task specification
into a series of smaller steps or action primitives, using system
prompts or in-context examples to enable powerful chain-of-
thought reasoning techniques. This strategy of encouraging
models to reason in a stepwise manner before outputting a final
answer has led to significant performance improvements across
several tasks and benchmarks [12]. Despite these promising
achievements, these approaches rely on handcrafted primitives
[2, 14, 22, 29], struggle with low-level control, or require large
datasets for retraining. Furthermore, various approaches that
leverage VLMs for robot learning suffer from a granularity
problem when using off-the-shelf models in a single-step/zero-
shot manner [15] or are unable to perform failure correction
without costly human intervention [14, 29, 23, 15]. In con-
trast, our framework bridges high-level reasoning with low-
level control, by leveraging an agentic framework for online
modification of a base policy’s action distribution at test-time,
without requiring human feedback or datasets for fine-tuning.
Moreover, we mitigate the granularity problem by proposing a
flexible and recursive grounding mechanism that uses VLMs



Fig. 3: An illustration of how GRAPPA intervenes in the action loop of pre-trained robotic policies in failure cases to provide
visuomotor guidance generated with an agentic framework of agents to shift the action distribution for correct task execution.

to query open-vocabulary perception models.

Agent-based VLM frameworks in Robotics: Rather than
using single VLMs in an end-to-end fashion, which might
incur issues in generalization and robustness, various works
have sought to orchestrate multiple VLM-based agents to work
together in an interconnection multi-agent framework. Here,
multiple agents can converse and collaborate to perform tasks,
yielding improvements for the overall framework in online
adaptability, cross-task generalization, and self-supervision
[38, 42, 31]. These agentic frameworks have provided possibil-
ities for enabling the identification of issues in task execution,
providing feedback about possible improvements. Challenges
remain, however, in that this feedback is often not sufficiently
grounded on the spatial, visual, and dynamical properties
of embodied interaction to be useful for policy adaptation;
instead, the generated feedback is often too high-level or
provides merely binary signals of success or failure.

Self-guided Robot Failure Recovery: Guan et al. [9] offer
an analysis of frameworks for leveraging VLMs as behavior
critics. Some approaches have explored integrating such pre-
trained models to improve the performance of reinforcement
learning (RL) algorithms. For instance, Ma et al. [26] use
LLMs in a zero-shot fashion to design and improve reward
functions, however this approach relies on human feedback
to generate progressively human-aligned reward functions and
further requires simulated retraining via RL, with high sample-
complexity. On the other hand, Rocamonde et al. [33] avoid
the need for explicit human feedback by directly using a VLM
(CLIP) to compute the rewards to measure the proximity of
a state (image) to a goal (text description), enabling gains in
sample-efficiency for guiding a humanoid robot to perform
various maneuvers in the MuJoCo simulator. A limitation of
this approach, however, lies in the difficulty of generating
rewards for long-horizon or multi-step tasks, which are char-
acteristic of tasks involving complex agent-object interactions.
Liu et al. [25] present a framework for detecting and analyzing
failed executions automatically. However, their system focuses
on explaining failure causes and proposing suggestions for

remediation, as opposed to also performing policy correction.
In this paper, we propose a framework that directly adapts a
base policy’s action distribution, during deployment, without
requiring additional human feedback.

III. GROUNDING ROBOT POLICIES WITH GUIDANCE

A. Problem Formulation

We consider a pre-trained stochastic policy π : O×S → A
that maps observations ot and robotic states st to action
distributions aπ,t, at each time step t. Our objective is to
generate a guidance distribution gt that, when combined
with this base policy, enhances overall performance during
inference without requiring additional human demonstrations
or extensive exploration procedures. Specifically, we aim to
develop a modified policy πguided : O × S → A that achieves
better performance on tasks where the original policy π
struggles. We define this new policy as follows:

πguided(ag,t|ot, st) = π(aπ,t|ot, st) ∗G(aπ,t|ot, s′t+1), (1)

where G : A × O × S → [0, 1] is a guidance function that
maps observation ot, action at, possible future state s′t+1

into a guidance score gt. The ‘∗’ operator here denotes the
operation of combining both distributions conceptually, which
we explore in detail in Section III-D. For the scope of this
project, we assume that a dynamics model D : S × A → S
is available, which can forecast possible future states of the
robot s′t+1 = D(st, aπ,t) given the current state st and action
aπ,t.

Focusing on leveraging the world knowledge of Vision
Language Models, while avoiding adding latency to the action
loop, we choose to express these guidance functions as Python
code. By integrating these code snippets into action loop of
the base policies, we eliminate the need of time-consuming
queries to large reasoning models. Samples of the format and
content of the guidance functions generated by the framework
are presented in the Appendix C.



Fig. 4: Information flow between the agents to produce a guidance code. a) The advisor agent orchestrates guidance code
generation by collaborating with other agents and using their feedback to refine the generated code. b) The grounding agent
uses segmentation and classification models to locate objects of interest provided by the advisor, reporting findings back to
the advisor. c) The robotic agent uses a Python interpreter to test the code for the specific robotic platform and judge the
adequacy of the code. d) The monitor agent analyses the sequence of frames corresponding to the rollout of the guidance and
give feedback on potential improvements.

B. A Multi-agent Guidance framework for Self Improvement

In order to generate the guidance function G, we leverage
a group of conversational agents empowered with visual
grounding capabilities and tool usage. Illustrated in Figure
4, the framework is composed of four main agents: an Ad-
visor Agent, the Grounding Agent, the Monitor Agent, and
the Robotic Agent. We provide system prompt samples in
Appendix A.
Advisor Agent. A Vision Language Model is responsible for
breaking down the task and communicating with the other
agents to generate a sound guidance function for a given task.
Grounding Agent. A Vision Language Model that iteratively
queries the free-form text segmentation models to locate
[4, 24], track [5], and describe elements relevant to the task
execution.
Monitor Agent. Responsible for identifying the causes of
the failures in the unsuccessful rollouts, the Monitor Agent
consists of a Vision Language model equipped with a key
frame extractor.
Robotic Agent. Language Model equipped with descriptions
of the robot platform, a robot’s dynamics model and wrapper
functions for integration with the base policy. It criticizes the
provided guidance functions to reinforce its relevance to the
task and alignment with the robot’s capabilities.

C. Guidance Procedure

The conversational agents interact with each other through
natural language and query their underlying tools to iteratively
produce a guidance code tailored to the task in hand, the

environment, and the robot’s capabilities. The information flow
between these agents is depicted by Figure 4.

For a given task expressed in natural language and an image
of the initial state of the environment, the Advisor Agent uses
Chain-of-Tought [37] strategy to generate a high-level plan
of the steps necessary to accomplish the task. Being able to
query a Grounding Agent and the Robotic agent, the Advisor
is able to collect relevant information about trackable objects
and elements in the environment, as well as the capabilities
and limitations of the robotic platform.

For a given plan and list of relevant objects required for
the task completion, the Grounding Agent uses grounding
Dino [24] and the Segment Anything Model (SAM) [4] to
locate the elements across multiple granularities and levels of
abstraction. For instance, if an object is not immediately found,
the agent will actively look for semantically similar objects
or will look for higher-level elements that could encompass
the missing object. For example, if the object “cup” is to be
located, and it could not be immediately found, the agent could
search for similar object like a “mug”. If it still struggles
to locate it, the agent could search for a “shelf” and then
try to find the “cup” or “mug” in the cropped image of
the “shelf”. If an object is found, it is added to a tracking
system [39]. This process enhances the Segment and Track
Anything [4] approach with flexible multi-granular search. The
object statuses are reported back to the Advisor Agent, which
iterates on the action plan or proceeds with the generation of a
guidance function grounded on the trackable objects located.

The Robotic agent acts as a critic to improve the guidance



function generated. Equipped with a Python interpreter and
details of the base policy’s action space, the agent can evaluate
the guidance function in terms of feasibility and relevance to
the robot’s capabilities. Once a function suffices the system’s
requirements, it is saved to be used in the action loop, in
combination with the dynamics model, to provide a guidance
score for possible actions sampled from the base policy.

After the execution of a rollout and the identification of
failure in the task completion, the Monitor Agent is triggered
to analyze the causes of the failure. By extracting key frames
from the rollout video using PCA [27] and K-means clustering,
the agent can feed a relevant and diverse set of images to the
Visual Language Model prompted to access the failure causes.
In the iterative applications of our framework, the Monitor
Agent provides this feedback to the Advisor Agent, which can
use this information to refine the guidance functions generated
in the previous iterations.
Temporal-aware Guidance Functions. Inspired by recurrent
architectures, we instruct the agents to generate guidance
function conditioned on a customizable hidden state (ht)
expressed as an optional dictionary parameter as shown in
the following example:

1 # Guidance function example in the context of
grabbing a mug

2 def guidance_code(state,
3 hidden_state={"mug_reached": False,"mug_grabbed"

:False}):
4 #available grounding functions
5 #x,y,z = get_pose("mug")
6 #h,w,d = get_size("mug")
7 #rx,ry,rz = get_orientation("mug")
8 ...
9 return score, new_hidden_state

The idea of using abstraction in a hidden state has proven to
significantly improve the guidance performance, allowing the
guidance functions to keep track of the task progress and adapt
the guidance to longer horizon tasks. The guided policy can
thus be written as:

πguided(ag,t|ot, st, ht) = π(aπ,t|ot, st) ∗G(aπ,t|ot, s′t+1, ht).
(2)

The complete guidance procedure is summarized in Algo-
rithm 1. Note that we refer to the self-orchestrated conversa-
tion between the agents which yields the guidance code as the
function Generate_Guidance_Function. For a closer
look at the chain of thought employed by each agent please
refer to Appendix A.

D. Guidance and policy integration

Aiming to guide a wide range of policies, our framework
is designed to work both with continuous and discrete action
spaces. In this section, we discuss the operation of combining
the guidance function with the base policy’s action distribu-
tions. Furthermore, we discuss how deterministic regression
models can be adapted to work with our framework.
Action-space Adaptation. We assume the availability of a
dynamics model D that can forecast possible future states of
the robot given a possible action a′π,t. In the manipulation

Algorithm 1 Guidance procedure of GRAPPA
Input
π: Base policy
D: Dynamics Model
env: Environment

1: for each episode do
2: ot, st ← env.init ▷ observation and initial state
3: G← Generate Guidance Function(ot, st)
4: ht ← Get Hidden State(G(ot, st))
5: for each time step t do
6: Aπ,t ← {π(ot, st)i}ni=0 ▷ Sample n actions from

the policy
7: πt ← π(Aπ,t|ot, st) ▷ Get action probabilities
8: Sπ,t ← D(st,Aπ,t) ▷ Infer possible future states
9:

10: Gπ,t ← G(ot,Sπ,t, ht) ▷ Compute the guidance
for the sampled possible future states

11: Normalize Gπ,t

12: πguided,t ← πt ∗Gπ,t ▷ Combine distributions
13: at ← Aπ,t [argmax(πguided,t)] ▷ Select the best

action
14: ot, st ← env.step(at) ▷ Execute at, update state

st+1 and observation ot+1

15: ht ← Get Hidden State(G(ot, st, ht)) ▷ Update
hidden states

domain, a dynamics model is often available in the form
of a forward kinematics model, a learned dynamics model,
or a simulator. Oftentimes, the action space A of policies
them-self is the same as the robot’s state S either being or
joint angles of the robot or the gripper’s end-effector pose.
For the last cases, where both the action and state space are
expressed in SE(3) integrating the guidance function with a
base policy would only require a multiplication of the guidance
scores with the action probabilities of the base policy. In other
scenarios, adapting the robot’s action and state space to match
the representation of the visual cues (position, orientation, and
size) would be required.

Considering the visual grounding, the action space and
the state space share the same representation (SE(3)), the
operation to combine the guidance function with the base
policy can be expressed as an element-wise weighted average:

πguided = (1− α)π · αG, (3)

where α ∈ [0, 1] represents the percentage of guidance applied
with respect to the base-policies distribution and is here
denoted as guidance factor.
Adaptation of Regression Policies. To properly leverage the
high-level guidance expressed in the guidance functions and
the low-level capabilities of the base policy, it is desired that
the policy’s action space be expressed as a distribution. In
the case of regression policies that do not provide uncertainty
estimates, several strategies can be employed to infer the action



TABLE I: Performance improvement on the RL-Bench [16] benchmark, by applying 5 iterations of guidance improvement
over unsuccessful rollouts.

Model turn tap open drawer sweep to dust-
pan of size

meat off grill slide block to
color target

push buttons reach and drag close jar put item in
drawer

stack blocks Avg. Success

Act3D 25 demos/task 76 76 96 64 92 84 96 48 60 0 69.2

+1% guidance 80 (+4) 96 (+20) 96 84 (+20) 92 84 100 (+4) 84 (+36) 80 (+20) 8 (+8) 80.4 (+11.2)
+10% guidance 88 (+12) 100 (+24) 96 88 (+24) 92 84 100 (+4) 60 (+12) 80 (+20) 0 78.8 (+9.6)

Act3D 10 demos/task 32 60 84 16 60 72 68 32 44 8 47.6

+1% guidance 44 (+12) 88 (+28) 88 (+4) 24 (+8) 68 (+8) 72 76 (+8) 52 (+20) 60 (+16) 8 58 (+10.4)
+10% guidance 44 (+12) 64 (+4) 84 20 (+4) 68 (+8) 76 (+4) 76 (+8) 40 (+8) 56 (+12) 8 53.6 (+6)

Act3D 5 demos/task 24 0 84 4 8 32 8 8 12 0 18

+1% guidance 48 (+24) 16 (+16) 84 8 (+4) 12 (+4) 40 (+8) 24 (+16) 20 (+12) 20 (+8) 0 27.2 (+9.2)
+10% guidance 24 0 84 8 (+4) 12 (+4) 44 (+12) 20 (+12) 8 20 (+8) 0 22 (+4)

Diffuser actor 5 demos/
task

24 64 40 28 44 68 40 24 44 0 37.6

+1% guidance 40 (+16) 92 (+28) 64 (+24) 40 (+12) 44 68 52 (+12) 24 84 (+40) 0 50.8 (+13.2)
+10% guidance 40 (+16) 84 (+20) 52 (+12) 28 52 (+8) 68 48 (+8) 32 (+8) 76 (+32) 0 48 (+10.4)

distribution. One common approach is to assume a Gaussian
distribution centered at the predicted value and compute the
variance using ensembles of models trained with different
initialization, different data samples, or different dropout seeds
or different checkpoint stages [1]. Other strategies to infer
the distributions of the model include using bootstrapping,
Bayesian neural networks, or using a mixture of Gaussians
[28].

IV. EXPERIMENTS & RESULTS

A. Experimental Setup

Task Definitions: We demonstrate the efficacy of GRAPPA,
in simulation on the RL-Bench benchmark [16] and on two
challenging real-world tasks. For the real-world setup, we
use the UFACTORY Lite 6 robot arm as the robotic agent
and, as the end-effector, we use the included UFACTORY
Gripper Lite, a simple binary gripper. The arm is mounted
on a workbench. For perception, we use a calibrated RGB-D
Camera, specifically the Intel RealSense Depth Camera D435i.
All experiments were conducted on a desktop machine with a
single NVIDIA RTX 4080 GPU, 64GB of RAM, and a AMD
Ryzen 7 8700G CPU.
• (Sim-to-real): Button-pressing: Here we employ the dif-

fuser policy to perform the button pressing tasks; to make
the task more challenging we introduce clutter in the envi-
ronment, as well as employ out-of-distribution props. The
intent is to measure the ability of GRAPPA to mitigate the
sim-to-real gap and remain robust to distractor objects.

• (Sim): RL-Bench: We consider 10 tasks on the RL-Bench
benchmark [16] using a single RGBD camera input, as
described in the GNFactor setup [41].

• (Sim): RL-Bench, learning from scratch: Aiming to
explore the capabilities of GRAPPA on learning new skills
from scratch, we selected 4 challenging tasks from the RL-
Bench benchmark: turn tap, push buttons, slide block to
color target, reach and drag.

• (Real): Sim-to-real policy adaptation: We want to evaluate
the capabilities of GRAPPA on reducing the sim-to-real gap
by guiding policies that were pre-trained in simulation but
are deployed to real-world tasks.

• (Real): Reach for chess piece: Given a cluttered scene
with many similar objects, we want to evaluate if the
multi-granular perception framework can effectively guide
the agent to identify and reach for the appropriate target.
We implement this perceptual grounding and reaching task
on a standard chessboard, where the agent must identify
and reach for one of the chess pieces specified by natural
language instruction.

Base Policies: We evaluate the effectiveness of our guid-
ance framework using different base policies, Act3D [8], 3D
Diffuser Actor [17], and a RandomPolicy. All policies plan
in a continuous space of translations, rotations, and gripper
state (SE(3) × R), however they utilize different inference
strategies:
• Act3D samples waypoints in the Cartesian space (R3) and

predicts the orientation and gripper state for the best scoring
sampled waypoint, combining a classification and regression
strategies into a single policy.

• 3D Diffuser Actor, on the other hand, uses a diffusion model
to compute the target waypoints and infers the orientation
and gripper state from the single forecast waypoint, thus
tackling the problem as a single regression task.

• RandomPolicy denotes any of the former frameworks that
has not been trained for a specific task, therefore the weights
are randomly initialized.
The fundamentally different types of policies’ outputs make

them a great use case for our policy guidance framework. Fur-
thermore, the common representation of the action and state
spaces of both policies (SE(3)×R) provides a straightforward
integration with our grounding models.

As described in Section III-D, the regression components
of the policies require an adaptation to transform the single
predictions of the model into a distribution over the action
space. For the sake of simplicity, we assume a Gaussian
distribution over the action space, with the mean centered
on the predicted values and the standard deviation fixed on
a constant value. The outputs of the classification component
of Act3D (waypoint positions) were directly considered as
samples of a distribution over the Cartesian space (R3).

The integration of base policies with the guidance dis-
tributions was performed by applying a weighted average



parameterized by α as shown in Equation 3.

B. Experimental Evaluation

Our experimental evaluation aims to address the following
questions: (1) Does GRAPPA enable policies to maintain or
improve performance on tasks in out-of-distribution settings?
(2) Does GRAPPA enable policies to bridge the sim-to-real
gap for deployment on real-world tasks? (3) Does GRAPPA
improve the performance of pre-trained base policies on
specific robotics tasks and environments without additional
human demonstrations? (4) Does the proposed multi-granular
perception capabilities effectively guide the policy in challeng-
ing cluttered environments? (5) Does GRAPPA enable policies
to learn new skills from scratch? (6) What is the effect of
guidance on expert versus untrained policies?

Does GRAPPA enable policies to bridge the sim-to-real
gap for deployment on real-world tasks and in out-of-
distribution settings? We first train a 3D Diffuser Actor policy
with 10 tasks with 100 demonstrations each with a single
RGBD camera setup (GNFactor setting). Using exclusively
simulation-based demonstrations, note this policy was chosen
as it displayed stronger overall performance in the simulation
benchmark. We roll out this policy in the real world in the
button-pressing task in a cluttered environment, as depicted by
Figure 2. To facilitate sim-to-real integration, we adapted the
dimensions, scale, and alignment of the real-world workspace
to match the simulation data, and positioned the RGBD camera
(intel real sense) in a similar placement as the camera used
to train the base policy. The sim-to-real setup was validated
by performing simple tasks in uncluttered settings as shown
in the appendix (III).

TABLE II: Real-world performance improvement in a sim-
to-real setting. Diffuser actor policy trained on 10 tasks in
simulation (GNFactor setup 100 demos/task) and evaluated
on the tasks “Push buttons” with different guidance levels.
Red cells refer to failures due to timeouts in task execution.
Orange cells refer to errors in perception. Green cells refer
to successes.

Policy Task completion Success Rate [%] Error Breakdown

Naive Sim2Real 0.0

+15% guidance 66.7
+50% guidance 50.0
+75% guidance 100

Finetuned Baseline (10 real-world demos) 33.0

+15% guidance 50.0
+50% guidance 16.7
+75% guidance 100

As depicted by Table II, this cluttered scenario has shown
to be out-of-distribution scenarios for the base policy solely
trained in simulation (Naive Sim2Real). Fine-tuning the policy
with 10 real-world demonstrations of pressing buttons in
uncluttered environments has proven to slightly increase the
performance of the policy. These base policies combined with
our guidance framework achieve a higher success rate in 5 out
of the 6 scenarios with guidance. In the only exception case
(finetuned baseline + 50%), the base perception models failed

to detect and keep track of the target button during the rollout
leading to a detrimental guidance of the policy.

Does GRAPPA improve the performance of pre-trained
base policies on specific robotics tasks and environments
without additional human demonstrations? We first assess
the effect of the proposed guidance on the Act3D and 3D
Diffuser Actor baselines following the GNFactor [41] setup,
which consists of a single RGBD camera and table-top manip-
ulator performing 10 challenging tasks with 25 variations each.
Guidance is iteratively generated for the failure cases. For the
failed rollouts, our policy improvement framework ran for 5
iterations. As displayed by Table I, the framework was able
to improve the success rate of the base policy on most of the
tasks, with the best results achieved by using 1% guidance.
The low amount of guidance has shown to be enough to
bend the action distribution to the desired direction, while
still preserving the low-level nuances captured by the base
policy. This suggests that GRAPPA is capable of improving
base policies by adding abstract understanding and grounding
of the desired task, while preserving the low-level movement
profiles captured by the original policies.

Does the proposed multi-granular perception capabil-
ity effectively guide the policy in challenging, cluttered
environments? In real-world experiments, we qualitatively
demonstrate the fine-grained detection capabilities of GRAPPA
by tasking it with reaching for a white knight chess piece in
a cluttered chess board. Figure 5 shows the roll-out of the
first guidance iteration over an untrained policy, displaying
the initial and final time steps of the task. The accompa-
nying heatmaps illustrate the distributions of the original
untrained policy (Diffuser heatmaps) and the guided policy
(Guidance heatmaps). Additionally, the multi-granular search
results highlight the steps taken by the grounding agent to
locate the target piece. After initially failing to detect the white
knight directly, the agent successfully identifies the chessboard
and then focuses within that region to locate the target piece.
These findings demonstrate that GRAPPA effectively leverages
a semantic understanding of scene components to guide the
policy towards successful task execution.

Does GRAPPA enable policies to learn new skills from
scratch? We evaluated the performance of the framework
on learning new skills from scratch on 4 tasks of the RL-
Bench benchmark: turn tap, push buttons, slide block to color
target, reach and drag. In this setup, we initialized the Act3D
policy with random weights and applied 100% of guidance
(α = 1.0) over the policy for the x,y, and z components.
Only leveraging the waypoint sampling mechanism of Act3D
and overwriting its distribution with the values queried from
the guidance functions generated. The results show that the
framework is capable of learning new skills from scratch,
achieving a higher success rate than the base policy pre-trained
on 5 demonstrations/tasks for the tasks “turn tap” and “push
buttons” tasks. When utilizing only the untrained Act3D policy
(without guidance) the policy achieved 0 success rate on the
tasks. Figure 6 demonstrates the iterative improvement of our
guidance framework. Updating the guidance code generated



Fig. 5: Real-world results for learning skills from scratch on the Lite6 chess task. The top row shows an external view of
the robot performing the tasks. The second row depicts the action heat map given by the random diffuser policy at the first
and last time step. The bottom row depicts the corresponding heat maps generated after applying the guidance. We show it
can successfully guide the action towards the desired object. On the right, we show a breakdown of the multi-granular search
performed by other grounding agent to locate the white knight; we disambiguate the scene by searching in parent objects
and constraining the search to semantically relevant areas.

for each failed rollouts from the previous iteration. Policy
rollouts are provided in Figure 9.

Fig. 6: Performance of our framework on learning new skills
from scratch (guidance over untrained policies), and iteratively
improving the guidance functions generated.

It is worth mentioning that a few variations of the simulated
tasks “turn tap” and “reach and drag”, which seemly would
require a precise orientation control of the manipulator, could
be solved by guiding only the Cartesian components of the
police’s output. For these variations, a qualitative analysis
shows that successful roll-outs could be achieved by tapping
the end-effector on the target objects.

We perform a similar experiment in the real-world settings.
Here, we run the framework only relying on the action
distribution given by the guidance code (α = 1.0), using a
RandomPolicy as the base policy. We first consider the task of
pressing colored buttons in a given sequence; using toy buttons
made out of acrylic and paper as a prop. Figure 7 shows the
roll-out corresponding to the first iteration for this task, along
with heat maps depicting a projection of the output action
distribution around the point of maximum. In this zero-shot
scenario, GRAPPA has proven to correctly guide the robot to
the desired objects preserving the prompted order; however, it
struggles to capture low-level nuances of the movement, such
as the appropriate pressing force and proper approach of the
buttons. A simulated version of this experiment is shown in
the appendix (Figure 9), demonstrating how combining the
guidance with a pre-trained policy can mitigate this behavior.



Fig. 7: Real-world results for learning skills from scratch on
the Lite6 on the multiple button press task. Each column
represents a keyframe in the task rollout. The first row
shows a third-person view of the robot’s movement and the
tabletop setting. The second shows the corresponding action
distribution over the space generated by the guidance code,
the red dot indicates the target waypoint for the end effector.
We demonstrate that GRAPPA can guide a random base policy
to successfully perform the desired task.

What is the effect of guidance on expert versus untrained
policies? As discussed previously, GRAPPA can learn tasks
from scratch using a random base policy with 100% of
guidance (α). Given that we are not affecting the policy, the
product of the iterative learning from scratch is the generated
guidance script which captures a high-level understanding
of the task, e.g., spatial relationships, and task completion
criteria, among others. We can qualitatively see the effect of
the learning process by comparing the guidance scripts for
different iterations of the same task. Appendix C includes
two samples of guidance code for the same task but on
different iterations. We can see that the code corresponding
to the second iteration is very simple and only accounts for
Euclidean distance and button order; while by the fifth iteration
considerations like orientation come into play.

On the other hand, applying the guidance to an existing
expert policy aims to shift the action distribution to account for
failure cases, like potentially out-of-distribution scenes. The
goal here is to use the gained high-level understanding to aid
the policy in task completion. Table I shows that adding too
much weight to the guidance function can yield diminishing
returns as it can overpower the nuanced low-level details from
the expert policy: notice that the performance gain across the
board is bigger using 1% of guidance.

V. CONCLUSION

Summary: In this work, we proposed GRAPPA, a novel
framework for the self-improvement of embodied policies. Our
self-guidance approach leverages the world knowledge of a
group of conversational agents and grounding models to guide
policies during deployment. We demonstrated the effectiveness
of our approach in autonomously improving manipulation
policies and learning new skills from scratch, in simulated
RL-bench benchmark tasks and in two challenging real-world

tasks. Our results show that the proposed framework is es-
pecially effective in improving the following high-level task
structures and key steps to solve the task. This capability can
be well suited for improving pre-trained policies that struggle
with long-horizon tasks or for learning new simple skills from
scratch.
Limitations: From an analysis of the guided rollouts, a few
of the tasks variations proved challenging for the perception
models used by the grounding agent, leading to false positives
detections or failure to locate specific objects. This limitation
was mainly observed in simulation task, were the graphics
object representations, even though simplified, do not always
match the representations used to train the object detection
models. This limitation could be addressed by integrating more
robust object detection models or verification procedures to
ensure the correct detection of objects in the scene. Moreover,
occasional inaccuracies on scene understanding by the Visual
Language Model (VLM) have been observed, leading to the
generation of inaccurate guidance codes and unexpected be-
haviors. Even though recent advances in large vision-language
models have shown great potential in understanding the un-
derlying dynamics of the world from large-scale internet data,
translating this knowledge into out-of-distribution domain,
such as robotics, while preventing hallucinations remains an
open challenge.
Future Work: Regarding future works, we think that com-
bining the proposed framework with fine-grained exploration
techniques would allow the policy to explore in a targeted
manner the low-level details of the task while leveraging the
high-level guidance provided by our framework. This may
enrich the guidance codes with the necessary low-level details
required to perform more complex tasks successfully.

Furthermore, the guidance function generation could be
further improved by composing and adapting from a repository
of successful guidance functions from previous experiences.
This could be achieved by incorporating Retrieval Augmented
Generation (RAG) [20] into our multi agent framework. This
modification could allow the guidance system to learn new
simple skills from scratch by interacting with the environment
and leveraging this collected knowledge to guide the policy
more effectively.

Aiming to incorporate the knowledge captured by the guid-
ance functions into the base policy, an experience replay and
finetuning mechanisms could be incorporated into our current
system. This modification could allow the framework to use
past guided experiences to improve the base policy in a sample
efficient manner. This could be achieved in a targeted matter
by leveraging Low Rank Adaptation (LoRA) [11].

Reproducibility Discussion: Intending to encourage other
researchers to build upon the introduced framework, we take
steps to ensure the usability and reproducibility of our work.
The source code for GRAPPA will be open-sourced and linked
to on a project website. We will provide dockerized scripts to
facilitate the setup across different development environments.
Additionally, in Section A we include the prompts used to
configure each agent. The temperature of the model was set



as zero to reduce variations in runs, as using fixed seeds for the
experiments. More hyperparameter details will be available in
the open-sourced repository.
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